Biextensions of 1-motives in Voevodsky’s Category of Motives
نویسندگان
چکیده
Let k be a perfect field. In this paper we prove that biextensions of 1-motives define multilinear morphisms between 1-motives in Voevodsky’s triangulated category DM gm(k, Q) of effective geometrical motives over k with rational coefficients.
منابع مشابه
Biextensions of 1-motives by 1-motives
Let S be a scheme. In this paper, we define the notion of biextensions of 1-motives by 1-motives. Moreover, if M(S) denotes the Tannakian category generated by 1-motives over S (in a geometrical sense), we define geometrically the morphisms of M(S) from the tensor product of two 1-motives M1⊗M2 to another 1-motive M3, to be the isomorphism classes of biextensions of (M1, M2) by M3: HomM(S)(M1 ⊗...
متن کاملMultilinear Morphisms between 1-motives
We introduce the notion of biextensions of 1-motives by 1-motives and we define morphisms from the tensor product of two 1-motives to a third 1-motive as isomorphism classes of such biextensions. If S is the spectrum of a field of characteristic 0, we check that these biextensions define morphisms from the tensor product of the realizations of two 1-motives to the realization of a third 1-motiv...
متن کاملVoevodsky’s Motives and Weil Reciprocity
We describe Somekawa’s K-group associated to a finite collection of semi-abelian varieties (or more general sheaves) in terms of the tensor product in Voevodsky’s category of motives. While Somekawa’s definition is based on Weil reciprocity, Voevodsky’s category is based on homotopy invariance. We apply this to explicit descriptions of certain algebraic cycles.
متن کاملTensor Structure on Smooth Motives
Grothendieck first defined the notion of a “motif” as a way of finding a universal cohomology theory for algebraic varieties. Although this program has not been realized, Voevodsky has constructed a triangulated category of geometric motives over a perfect field, which has many of the properties expected of the derived category of the conjectural abelian category of motives. The construction of...
متن کاملMotivic interpretation of Milnor K-groups attached to Jacobian varieties
In the paper [Som90] p.105, Somekawa conjectures that his Milnor Kgroup K(k, G1, . . . , Gr) attached to semi-abelian varieties G1,. . . ,Gr over a field k is isomorphic to ExtrMk (Z, G1[−1] ⊗ . . . ⊗ Gr[−1]) where Mk is a certain category of motives over k. The purpose of this note is to give remarks on this conjecture, when we take Mk as Voevodsky’s category of motives DM (k) .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009